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A probabilistic delineation of the burst process of fiber bundles is proposed. It is shown that a burst
process is governed by its rupture equation whose solution is fully characterized by the corresponding
load function, which has a simple relation to the initial disorder. The extremes of the load function
determine the criticalities of a burst process. According to burst size and influence on the whole bundle,
the critical phenomena are divided into three categories: globally critical, subcritical, and quasicritical.
As the number of fibers N in a bundle tends to infinity, the sizes of critical regions relative to N tend to
zero. Rupture beyond critical regions is stable, whereas rupture in critical regions is rather unstable: A
small increase of the external force may lead to an avalanche, i.e., a failure of a large number of fibers.

Avalanches occur only in critical regions.

PACS number(s): 05.70.Jk, 02.50.—r, 62.20.Mk, 81.40.Np

I. INTRODUCTION

Rupture properties of random medium systems are in-
teresting in both science and technology. Some models
have been defined to describe various aspects of real situ-
ations [1,2]. Among them, fuse models have recently at-
tracted much attention [3-10]. However, very few
theoretical results have been obtained due to the complex
interplay of disordered failures and the subsequent redis-
tribution of local electrical currents (or, in mechanical
term, local stresses). For example, in the study of fuse
models, a large set of algebraic equations (Kirchhoff’s
law) must be solved to determine the new distribution of
current in the fuse network after a fuse is broken, but one
cannot predict a priori which fuse will fail. Computer
simulations are commonly employed. However, in order
to reveal the underlying “physics,” some simplifications
should be made. Although such simplified models may
be less realistic, they can show us more about the univer-
sal and the intrinsic properties of the system, which are
difficult to discover by using numerical methods alone.

As one of the simplest models of fracture, the failure of
fiber bundles has been studied over many years since the
original work in 1926 by Pierce [11]. The model assumes
that all fibers in a bundle share equally the load borne on
the bundle and that every fiber has a threshold of break-
down strength, which obeys some probability distribu-
tion. Stretched by an increasing force, the fibers in the
bundle fail gradually and finally the bundle breaks. The
model is equivalent to the parallel connected fuse model,
in which the fuses have the same resistance but randomly
distributed thresholds of current. Such models can be
used to study the role of the initial disorder in the rupture
without concerning complex spatial details.

Earlier work on the fiber-bundle model concerns only
the strength of the entire bundle, which is usually associ-
ated with the theory of extreme statistics [12,13]. It was
proved in 1945 by Daniels [14] that under some general
conditions, the strength of a fiber bundle obeys asymptot-
ically the central limit theorem. Additional statistical
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behaviors of the bundle strength under more relaxed re-
strictions or in more realistic situations were studied by
several authors [15-21].

Now we may say that the bundle strength problem,
which concerns only the “static” failure properties, has
been thrashed out and reaches a rather clear understand-
ing. In contrast, growth aspects of the rupture of fiber
bundles have been studied only in recent years. Some
scaling relations in the burst process of fiber bundles were
discovered. Hemmer and Hansen [22] proved analytical-
ly that the burst-size distribution D(A) obeys a universal
power law, namely, D(A) < A~3/2 where A is the number
of fibers that breaks simultaneously and D(A) is the prob-
ability of one failure event with burst size A. By comput-
er simulations, Lu and Ding [23] showed that both the
sizes and “locations” of large bursts exhibit scaling
behaviors, where a “large” burst means the one with the
largest size in all preceding bursts in the burst process.
All fibers in the initial bundle are numbered from 1 to N
consecutively in accordance with their strength thresh-
olds from the smallest to the largest. The “location” of a
burst is defined as the sequential number of the fiber that
breaks first in this burst. It is worth noting that these
scaling behaviors are, to a great extent, independent of
the distribution of failure thresholds of individual fibers.
Though being highly structure sensitive, rupture may
generally be grasped in such simple ways. The
discoveries of such universal properties of fracture en-
couraged us and provided a useful clue for further ex-
ploration.

Another universal property of fracture is criticality.
Usually, as the stretching force increases gradually the
fibers in the bundle fail bit by bit. When the force arrives
at a certain value ¢,, which is called the critical force or
the mean strength of the whole bundle, the situation be-
comes quite different: A failure of any fiber in the n,
remaining fibers may trigger a large number of conse-
quent failures. The final breakdown of the bundle is a
sudden catastrophe with a great number of fibers failing
together. The rupture before the critical point is stable; a
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small cause results in a small effect. While the rupture in
the critical region is rather unstable, a microscopic event
(a failure of few fibers) may lead to a macroscopic failure
(a failure of a large number of fibers). The critical region
is a region around ¢, with a width of the order 0(\5—1\7 )
(14,20]. The final failure with n, fibers breaking together
is usually the largest one. The ratios ¢, /N and n, /N tend
to fixed values, which depend only on the strength distri-
bution function of individual fibers in the thermodynamic
limit N— . Of course, this is the most common situa-
tion and is also in agreement with actual experiences.

Are there any other situations of criticality? How does
the failure of a fiber bundle evolve? What is the strength
of a bundle in more general cases of the strength distribu-
tion of individual fibers? When does an avalanche occur?
The motivation of this paper is to investigate these prob-
lems in detail. To study the properties of the whole burst
process of a fiber bundle we shall begin with the following
problem: When the bundle is stretched by a given force ¢,
how many fibers will survive the break down? The model
is described in Sec. II, where a general picture of the
burst process is given. In Sec. III, the probability distri-
bution of the number of the surviving fibers at a given
external load is calculated by means of recurrence tech-
niques. From the obtained recurrence relations, the
asymptotic solution of the distribution in the thermo-
dynamic limit N — « is derived in Sec. IV. The mean
values of the number of the surviving fibers are calculated
in Sec. V. Section VI is devoted to the investigation of
the critical phenomena. Some numerical examples are
given in Sec. VII. Finally, some remarks and discussions
are included in Sec. VIIL.

II. BURST ANALYSIS

Consider a load-carrying fiber bundle consisting of a
total of N fibers. The fibers are clamped at both ends, one
is fixed, and a stretching force ¢ is applied on the other
end (Fig. 1). The fibers in the bundle are assumed to have
random strength thresholds X »J=12,...,N, which are
independent random variables with the same cumulative
distribution function F(x) and density function f (x):

Prob(Xj5x)=F(x)=fo"f(u)du vj (1)

(*“Vj* reads as ““for all j” and in this paper it means ‘“‘for
j=12,...,N”). The total external load ¢ on the bundle
is supposed to be equally shared by all unbroken fibers in
the bundle. Whenever a fiber bears a force equal to or
greater than its strength threshold, the fiber breaks im-
mediately and does not share any force then and after.
Suppose the external force increases slowly from 0 to
infinity. When it reaches such a value ¢ that the load
shared by each fiber just equals the smallest strength
threshold of the remaining fibers in the bundle, the weak-
est fiber fails and the force borne by each of the remain-
ing fibers increases a little. Thus another fiber may fail at
the same t. If so, the force applied to each of the other
fibers will increase again and further failure may occur,
and so on. This lasts until all remaining fibers no longer
break at the same ¢t. We call this event the “burst” that
occurs at external force t. The burst size is defined as the
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FIG. 1. A fiber bundle pulled by force .

number of fibers which fail simultaneously in this event.

Rearrange the thresholds {X;}] into ascending order as
{X]'} such that X] <X7 < --- <Xy. If X} <t/N then
the first fiber breaks and each of the remaining fibers
bears tension t /(N —1) consequently. At the same ¢, if
one also has X3 <t¢/(N —1), then the second fiber breaks
too. Generally, if the inequality XF=<t/(N —k+1)
holds for k =1,2, ..., m, then the m weakest fibers in the
bundle will  break together. Moreover, if
Xy 1 >1t/(N—m) also holds at the same external force
t, then the other fibers in the bundle will no longer break.
In this case, there are exactly m fibers broken down.

Let

g =(N—k+1)X} Vk. (2)

The condition that there are exactly m fibers that have
failed under external load ¢ on the bundle is that g, ., is
the first term exceeding ¢ in the series g,,8,,...,8y.- A
burst can only occur at the point that the external load
equals some g, . It is evident that a burst does not occur
at every such point. If g, is less than some preceding
g; (j <k), then the kth fiber must fail together with some
of its preceding fibers. Hence the strength of the entire
bundle is maxg,. Figure 2 is a sample for a bundle with
N =100 fibers whose strength thresholds obey uniform
distribution F(x)=x (0<x <1). In this sample we see
that, for example, the 14th, 15th, and 16th fiber will fail
together with the 13th fiber at the external load
t =g,3=14. Because g ;> g3, the 17th fiber will not fail
together with fibers 13—-16. The size of this burst is 4.

]

/

i

FIG. 2. {g;} of a sample bundle with N =100 fibers. The
strength threshold of each fiber is uniformly distributed on the
interval [0,1]. The curve is the load function multiplied by
N: NG (k)=k(1—k/N).
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The strength of this bundle is maxg; =g, =27.

According to the Kolmogorov-Smirnov theorem in
mathematical statistics theory (see, for example, Ref.
[24)D

F(xk)=k—;l+o<1/x/ﬁ) : 3)
we have

g =N[G(X})+0(1/VN)] @)
in which

G(x)=x[1—F(x)]. (5

On average, if each surviving fiber in the bundle shares a
stretching force x, then the number of the survivals is
asymptotically equal to N[1—F(x)] and therefore the
load on the bundle must be Nx[1—F(x)]=NG (x). For
this reason we call G(x) the load function (per fiber).
The curve in Fig. 2 is the corresponding load function
(multiplied by N). The load function plays a crucial role
in the burst process because of relation (4).

When we take the thermodynamic limit N — oo the
gaps between neighboring X!’s tend to O; thus we can
treat the discrete values X;*’s in a continuous manner. In
fact, it has already been proved that the bundle strength
is asymptotically the maximum of the load function G (x)
provided that G (x) has a unique maximum [14,20]. The
load function dominates the average behavior in the rup-
ture process.

Now we turn to investigate the influence of the fluctua-
tions. Consider an interval (x’,x’’) in which G(x) in-
creases monotonically. On average, the terms of {g;} fal-
ling in the interval (Nx',Nx'’) constitute an increasing
series because of the relation (4). Therefore, when the
external load falls in this interval, the bursts will be of
size 1 only. In other words, no fiber will fail together
with other fibers whose corresponding g;’s belong to the
interval. This is obviously an incorrect failure picture.
The reason is that an improper average has been done.
In fact, the average of bursts should be performed after
the statistics within each individual sample.

Suppose that g, and g, ., belong to the interval
(Nx',Nx"), A>0. From Eq. (4), the fluctuations of gg
and g, , around NG (X{) and NG (X}, ), respectively,
are of the order O(VN). In addition to
G(X?:a)>G(X]) if gx can exceed g4, by a fluctua-
tion, then the difference AG between G (X)) and
G (X}, ) should be of the order O ( 1/V'N) at most. As
N tends to infinity, if G'(X}) is not zero, the order of AG
with respect to N is the same as F(X,,)—F(X}) be-
cause of the relations

GXEA)—G(XE) =G (XENX a—XT) . @)
Additionally, according to Eq. (3),

F(X,:+A)—F(X,:)=-IAV+O(1/\/W) . ®)
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Hence AG is of order O(1/V'N) provided A is not
greater than O(V'N ). So we have shown that in usual
regions, the burst sizes do not exceed O (V'N ). It should
be noted that if G'(X;’)=0, the burst size may be larger
than O(V'N ), but it can never reach the order O(N) in
this case.

Now we briefly discuss the distribution of the number
of survivals under external load ¢. Let x be the force ap-
plied on each remaining fiber in the bundle. On average,
it follows from the above argument that

t=NG(x) 9)
and the survival number

n=N[1—F(x)]. (10

As t is given, the corresponding x can be obtained from
Eq. (9) and the survival number is calculated using Eq.
(10). It can be shown that the order O (V'N ) fluctuation
of {g;} around NG (x) leads to a same order fluctuation
of the survival number around its mean, given by Egs. (9)
and (10).

In some cases Eq. (9) has several solutions. Which
should be selected? In fact, in an actual sample bundle
the survival number should be determined by the condi-
tions

81582 -+ s8N-n<t; BN—n+1>t. (11)

Once the condition (11) is fulfilled, the other following
terms of {g;} need not be considered. This means that
only the largest candidate of n is correct, or only the
smallest solution of Eq. (9) should be selected.

III. THE PROBABILITY DISTRIBUTION
OF THE SURVIVAL NUMBER

For an ascending series x; <x, < : -+ <xj, one has

Prob(x; =X} Sx;+dx; Vj)

=NWF(x\)dF(x;) - -dF(xy). (12)

The factor N! appears in Eq. (12) because there are in to-
tal N! disordered series corresponding to one ordered
series {X'}.

Set p, (t) denoting the probability that there are n fibers
not broken down in the bundle stretched by total force .
For simplicity, let

=t
N—k+1

According to the argument in Sec. II,

Vk .

Dn(t)=Prob(X} <t,, X5 <t,,..., X% _,Zty_n>

Xy-n+1>ty—p+1).  (13)

From Egs. (12) and (13) one can prove that (see Appendix
A)
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j=m
(14)
J . . . .
where [m J is the binomial coefficient

J
m ]=j!/(j —m)im!, §;,=0if i#jand §;; =1 otherwise:

J
1—zF | L

pi=1. (15)
1—F|L

Equation (14) is a linear recurrence relation for {p;(7)}.
Due to the complex dependence of the coefficient of p;(7)
on j in Eq. (14), the equation cannot be solved exactly. In
principle, one can numerically compute py(?),
Pn—1(1),...,po(2), by using Eq. (14) step by step when ¢
is given. Unfortunately, however, the high numerical in-
stability of the recurrence relation (14) makes it almost
impossible to be used for any practical purpose when N is
large. For example, the single precision (about 7
significant decimal digits) just meets the need of the com-
putation for N =40, while the computation for N =80
needs the double precision (about 16 significant decimal
digits).

p,(t) can be rewritten as

N
n 1—F

)= |Qn_,(t)

i” , (16)
n

On —n(t) has a physical implication: It is the failure prob-
ability of N —n selected fibers out of total N fibers in the
bundle stretched by force ¢. Because the N —n fibers
have already failed, each of them must have a strength
threshold smaller than ¢ /n. Thus we have

On_n()= |1—F

L
n

Therefore the probability p,(¢) can be given as
- l ] (18)
n

with a,(¢) <1 for every n. Such a form of p,(t) is quite
similar to that of a binomial distribution, except for the
factor a,(t). The main difference is that the “trial proba-
bility” F(t /n) varies with n. The factor a,(¢) guarantees
the normalization of {p,(z)}. In analogy to binomial dis-
tributions, the important parts of the distribution {p, ()}
is concentrated in some small intervals of values of n.

N-—n

s 1—F
n

IV. THE ASYMPTOTIC ANALYSIS
OF THE PROBABILITY DISTRIBUTION

By simple consideration, one can point out directly
that for small, but not null, values of n, p,(¢) is very
small. When ¢ is small, the load shared by each fiber is
also very small. So it is almost impossible to burst many
fibers. The probability that there are only a few fibers left
is then close to 0. When ¢ is large, if there are a few fibers
left in the bundle, then these fibers should have very large
thresholds of strength and the probability of such situa-
tions arising may also be neglected.

polt) describes the global failure probability, which
should be considered separately. Therefore we have to
treat p,(¢) and p,(t) with relative large n. For n >0, by
using the Stirling formula, Eq. (18) can be converted to
the form

. ] ‘
_ N|{1—F|—
" V' Na,(t) . l" ] \
t:—————————_ —_—_—
P \/217'n(N—n)exp tn n n
e
NF |—
n
+(N —n)ln

(19)

In order to research the asymptotic behavior of the
probability distribution, we introduce rescaled continu-
ous variables £ and 7 to replace n and ¢, respectively,

==, 7=—.
5 N N
The thermodynamic limit is taken as follows: N, n, and ¢
all tend to infinity, but § and 7 remain finite values. Re-
placing the summation over n by the integral over &, i.e,,
making the substitution

S —[lan— [ 'Nag

n>0

and denoting

AlET)= Na, (1)
SRRV oy e g
- 12
p&TI=Np, ()= |5 — | A& TIexp[—No(&7)],
(20)
where
$(&;7)=E&In +(1_§)1n.1;i ’ 21)
1—-F x FlZ
§ 3

a new continuous distribution p(§;7) is then introduced
to replace p,(z). But it should be noticed that p(0;7) does
not correspond to p,(?), the probability of breaking down
the bundle, as discussed above. Strictly speaking, one has
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fo‘dgp(g;¢)= S p, (D=1—p,(1) . (22)

n>0

Suppose z < 1. Equation (18) corresponds to
172

N ! . _ . -
o fo d& A(&;T)exp[ —Nh(&T,2)]=1, (23)
where
1—zF é
h(&7,2)=¢(&7)—(1—€)nz—£1n
1-F|Z
3
=£In +(1—)n—L1"&_ (24)
1—zF | L zF | T
3 :
Using the evident inequality for y > 0,
Iny >1— 1 , (25)
y

one can easily show that #(£;7,z)>0. Further, because
the equality in Eq. (25) holds only for y =1, we see that
h (§;7,z) takes its minima if and only if

T
§

Recalling that F(x) is monotonously increasing and
z <1, it can be found that there do exist solutions of Eq.
(26) satisfying 1 —z <£< 1 provided F(r)>0. The cases
that F(7)=0 are not interesting since such small forces
cannot burst any fiber at all.

In the thermodynamic limit N — o, the integral, of the
left-hand side of Eq. (23) as a whole is determined by the
integrals over the neighborhoods of all minimal points of
h(&;7,z). The integral of Eq. (23) can be calculated by
the Laplace method (see Appendix B). If Eq. (26) has
only one solution, we obtain

E=1—zF ; (26)

1= |2
& ¢
A(§;7)=W , 27)

where z is evaluated by Eq. (26). But, unfortunately, Eq.
(26) has more than one solution in general cases. Here we
cannot extract 4 (§;7) yet. From numerical computa-
tions we discovered that Eq. (27) holds in all cases pro-
vided that £ is assigned as the largest solution of Eq. (26).
In other words, only the largest maximum of h(&;7,2)
contributes to the integral of Eq. (23). We shall use this
conjecture in this paper, whose validity may be verified
by comparing its deductions with experiments. Since Eq.
(15) fully characterizes {p,(#)} and Eq. (23) is equivalent
to Eq. (15), it is demonstrated that 4 (£;7) can be extract-
ed from Eq. (23). However, the problem remains of how
to prove the validity of Eq. (27) mathematically in gen-
eral cases.
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V. THE MEAN VALUE AND THE DEVIATION
OF THE SURVIVAL NUMBER

Denote by Nu(7) the mean number of the surviving

fibers in the bundle under external load t =Nt:

Nu(r)= 3 np,(t)

n>0
= [ agp(&nNE
N 172 .
= |57 | [ NEAGTIexpl— N7 1dE .

(28)

Using the inequality (25), it is easy to show that ¢(&;7)
reaches its minima at £=1)(7), where 7 satisfies

T

n(7)

n(r)=1—F (29)

Here we encounter again the multimaximum problem
similar to that in Sec. IV: Eq. (29) may have more than
one solution or 7(7) may be a multivalue function. Since
&(&;7)=h(&;7,2=1), we use the similar method that
only the largest solution contributes to the integral in Eq.
(28) as the limiting case (z—1) discussed in Sec. IV.
Thus, using the Laplace method (Appendix B) we obtain
172 172

Nn* A(n*;7) 2m

Négn*;7)
=Nn¢n* (30

Nu(r)= o

where #* is the largest solution of Eq. (29). Hence we
call Eq. (29) the mean-value equation, which must be
satisfied by u(7).

Similarly, the deviation ND(7) of the number of
remaining fibers in the bundle under external load t =N~
is calculated as

ND(7)=3 [n —Nu(7)]%p, (1)

n>0
N 172 .
=57 | [ Ve ragn
Xexp[—N¢(&;7)]dE
1_.
—y—uel=m) (31)
1-=r |~
T

We can also consider the failure of fibers in a bundle
stretched by a given force N7 as follows. Initially the
bundle has Nu,=N fibers; each fiber bears a tension .
All fibers with strength threshold smaller than 7 will
burst first; the number of these fibers is NF(7). Thus the
number of remaining fibers is reduced to
Np,=N—NF(7/uy) and each remaining fiber bears a
tension 7/u,. Therefore the number of remaining fibers
is further reduced to Nu,=N—NF(7/u,). Each de-
crease of the number of remaining fibers increases slight-
ly the force loaded by each survival and hence further
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failure occurs. Generally, if the survival number is Ny,
after the ith repetition of the above virtual process, then
Nu; . ,=N—NF(7/u;) is the survival number of the
(i +1)th repetition. If such a procedure arrives finally at
a finite limit value of p >0, then the bundle will stay at
the state with Nu remaining fibers. Evidently yu must be
stabilized at the largest solution of the mean-value equa-
tion (35).

Let
=T
ulr)= X (32)
Equation (31) can be rewritten as
=G (x) . (33)

Given 7, u(7) can be evaluated by Eq. (32) by extracting x
from Eq. (33) in advance. This is very similar to the situ-
ation in Sec. II, where we have shown that if Eq. (33) has
several solutions, then the smallest one should be chosen.
That is to say, the largest solution of Eq. (31) is the re-
quired one for the mean value. This agrees with the con-
jecture in Sec. IV. In contrast, if the conjecture is in-
correct, then we cannot come to a result in agreement
with the conclusion in Sec. II.

VI. CRITICALITIES

In Sec. V, the calculations assume that there exists at
least one solution for the mean-value equation (29). Un-
like Eq. (23), Eq. (29) has no solution when 7 is large
enough. Because Eq. (29) is equivalent to Egs. (32) and
(33), it is clear that Eq. (33) and hence Eq. (29) have a
solution only if 7=<7,; otherwise they have no solution,
where

7, =maxG (x) . (34)

7, is the maximal load (per fiber) the bundle can bear.
Does it really mean that if Eq. (29) has no solution, then
the whole bundle has broken down? By calculating the
integral using the similar technique in Secs. IV and V, it
follows from Eq. (22) that

0 if Eq. (29) has a solution

1 otherwise . (35)

polt)=

Therefore whether Eq. (29) has a solution or not is indeed
a criterion of breaking down the bundle. 7, is then called

the globally critical external load (per fiber). At this
point, there will be
TC
n.=N— (36)

fibers failing together, where x_ is the point at which
G (x) arrives at its greatest maximum. We see that the
final burst of the bundle is a burst of O (N) size, which
differs fundamentally from the bursts caused by fluctua-
tions whose sizes is up to the order O(V'N ) (see Sec. II).
For this reason, we call a burst with size up to the order
O(V'N ) microscopic and a burst with size of the order
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O(N) macroscopic. If G(x) has only one maximum,
which is the most common situation, the final burst is the
only macroscopic burst.

Here we point out the other two possibilities, which,
though being somewhat unusual, are very interesting. (i)
For some threshold distribution functions, point exist at
which the bundle undergoes macroscopic bursts, which
are almost the same as the final burst, except that the
bundle does not break down completely. We call these
points subcritical. This is roughly the case that the initial
bundle consists of several kinds of fibers and the strength
differences between the different kinds of fibers are so
large that fibers of large strength begin to fail only after
all fibers of small strength fail completely. (ii) For ap-
propriate threshold distributions, another kind of point
exists; the burst sizes at these points are between macro-
scopic and macroscopic. We call these points quasicriti-
cal.

Differentiating Eq. (29) we have

lf T
dr T T
I==f|—
TV
Using Egs. (32) and (33), the formula can be written as
dp . G(x) (38
ir el 3

where x =7/u. It results from Eq. (38) that if G'(x)#0,
then u(7) is differentiable for 7, that is to say, a small in-
crease of the external load 7 causes a small failure of a
few fibers. The rupture is stable in regions where
G'(x)#0. We notice that in these regions the root mean
square fluctuations [ ND(7)]!/? are of the order O (V'N ),
which is in agreement with the previous general con-
siderations (Sec. II). When G'(x) approaches zero,
du/dT— — =, the rupture becomes unstable: A small in-
crease of the external load may lead to a big avalanche
with a great many of fibers bursting. The points where
G'(x)=0 are the critical points of the burst process. Ac-
cording to Eq. (31), we also have D(r)— o« at critical
points; the fluctuations at critical points are much larger
than those in stable regions.

To research the rupture behaviors at critical points, we
investigate the solution of the mean-value equation (29) in
some detail. It is convenient to solve this equation graph-
ically. At first, it is easy to depict the 7(7) vs T curve ac-
cording to the equivalent parameter form of Eq. (29)

n=r/x , 7=G(x) (39)
by setting x varying from O to . Figures 3 and 4 give
examples for three specially designed bundles (see Sec.
VII for details). The curves in Fig. 3 are load functions.
n(7) is plotted as the dashed lines in Fig. 4. We see that
those 7(7)’s are multivalue functions. In accordance with
Sec. V, for a given 7, the mean value u(7) should be the
largest among the various values of 7. The curve of pu(7)
vs 7 can then be drawn immediately following this princi-
ple. The curves of the mean values in Fig. 4 are plotted
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0.0 02 04

FIG. 3. The curves of the load function (42) of a special fiber
bundle (Sec. VII) for three values of the parameter ¢. Curves a,
b, and c correspond to ¢ =0.64, ¢ =0.6135, and ¢=0.7, respec-
tively.

as solid lines.

Curves a, b, and c in Fig. 3 correspond to Figs. 4(a),
4(b), and 4(c), respectively. In Fig. 3, curve a has two
maxima with the first one lower than the second; curve ¢
is similar to curve a, except the first maximum is higher
than the second; curve b has an inflection point followed
by a maximum with the former lower than the latter. In
Fig. 4(a) we see that u(7) jumps down at =71 4> Which is
the first maximum of curve a in Fig. 3. The bundle un-
dergoes a macroscopic failure, but the whole bundle does
not break down. This point is a subcritical point. The
entire bundle breaks completely down at the globally crit-
ical point 7=7p. In Fig. 4(b), u() has an infinitely small
decreasing jump at 7=r,, which corresponds to the
inflection point of curve b in Fig. 3. This is a quasicriti-
cal point at which D(7)— o [Eq. (29)] and the burst size
is larger than the microscopic size, but smaller than the
macroscopic size. The situation in Fig. 4(c) is rather sim-
ple since the whole bundle breaks down at point A4,
which corresponds to the first maximum of curve ¢ in
Fig. 3; the part of this curve following the greatest max-
imum does not influence the burst process. This is a gen-
eral principle: The effective part of the load function
governs the burst process, while the rest has no influence
at all. The “effective part” of a load function G(x) is
defined as follows: A point x belongs to the effective part
if and only if G (x) Zsup, ., G (u).

VII. NUMERICAL SIMULATIONS

To confirm the theoretical results obtained in the
preceding sections, a special threshold distribution densi-
ty function for individual fibers is designed. We consider
a threshold distribution of the types of quadratic parab-
ola defined in the interval [0,1]:

3(x —c)?
(1—e¢)+c3 "’

where ¢ <1 is an adjustable parameter. This distribution
has approximate bimodality: Its value is high at both

fx)= x€[0,1] (40)
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FIG. 4. The curves of 7(r) (dashed lines) and u(r) (solid
lines) of the designed bundle for the three selected values of c:
(a) 0.64, (b) 0.6135, and (c) 0.7. The 7(7)’s are multivalue func-
tions. For a given 7, u(7) is equal to the largest value of 7(7).
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ends of the distribution interval and is low in the middle.
The corresponding cumulative distribution function and
load function are

3.3
F(x)zi‘zc__?_)_—F_C (41)
(1—¢)+c?
and
3
Gx)=Xlxzcrte) 42)
(1—¢)’+c

respectively. Figure 3 is a plot of G (x) with three select-
ed values of ¢: (a) ¢ =0.64, (b) ¢ =0.6135, and (c) ¢c=0.7.
Using the theory of the cubic algebraic equation, it can
be shown that G(x) has an inflection point when
c=4'7/(14+41)=0.6135. . .. The corresponding burst
processes have already been analyzed in Sec. VL.

To simulate the burst process on a computer, pseu-
dorandom numbers that obey the distribution (41) must
be produced. It is easy to prove that the random variable
Y obeys the distribution (41) if

Y=F Y X)=c+[(1—=3c +3c?)X—c3]""?, (43)

where X is a (0,1) uniformly distributed random variable.
X can be obtained by a computer built-in procedure of
random numbers and then Y will meet the requirement.

The simulations in this paper for each of the three
cases are performed for 1000 samples. The initial num-
ber of fibers of each bundle is N =1000. The mean values
and the deviations computed from the simulations are
plotted in Figs. 5 and 6. For comparison, the theoretical
curves are also depicted.

The burst sizes were counted during the simulations.
The number of the bursts with size A is denoted by
W(A). Figure 7 is the plot of W(A) vs A in the three
cases. According to the result of Hemmer and Hansen
(22],

W(A)x< A 32 (44)

holds for small bursts if the load function has a unique
maximum. Our simulations show that the power law
W(A)=A~7 holds for small bursts (up to size V'N ) too,
in the cases that G (x) has two maxima. The best fitting
values of y are around 3. By our simulations, we expect
that the power law (44) is universal if the number of fibers
N is large enough.

VIII. CONCLUSIONS AND DISCUSSIONS

The evolution of the rupture of fiber bundles in the
course of increasing external load is studied in this paper.
Our investigations show that the load function plays a
crucial role in the burst process of fiber bundles. First,
the strength of a fiber bundle is determined by the
greatest maximum of the load function. The result devel-
ops the previous work for fiber bundle strength
[14,19,20], in which only single maximum load functions
have been considered. We may expect that a similar cen-
tral limit theorem holds for multimaxima cases, though it
has not been deduced in this paper. Second, we show
that the effective maxima of the load function determine
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FIG. 5. The dashed curves are the mean values (divided by
N) of the survival number. Each of them was computed from
1000 simulations for the designed models with each bundle con-
taining N =1000 fibers. The solid lines are the corresponding
theoretical curves. The values of ¢ are the same as in Fig. 4.
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the categories of criticalities, namely, global criticality,
subcriticality, and quasicriticality.

It should be pointed out that for some fiber bundles
there is no critical phenomenon provided the load func-
tions have no extremes. The case F(x)=exp(—1/x) is
an example. But it can be shown that if the threshold dis-
tribution for individual fibers has a second-order mo-
ment, then the load function must have an extreme. In
fact, 1—F(x) must decrease more rapidly than 1/x;
hence G(x) approaches 0 when x — . Therefore the
criticality is a general feature of actual fiber bundles.

On the other hand, we have demonstrated that the
O (N) bursts occur only at critical points. All bursts that

WEIJIANG LEE 50

occur elsewhere are caused by fluctuations. The sizes of
the latter are up to the order O(V'N ) and obey a power
law [22]. The numerical simulations show that the power
law holds for small-size bursts even in cases that the load
functions have several maxima. It seems likely that
power law is a universal principle for fluctuation phe-
nomena.
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APPENDIX A: PROOF OF EQ. (14)

. * * .
Pa()=Prob(X?t <t,, X3 <ty, ..., X} <tyomX i1 >ty

=N! 'folldF(X1)fx’lzdF(x2) L. fxr,vf,,

N -n- 1

X

N-—-—n+1 N-n+1

=NUy_, (), (1),

where Iy _,(t) and J, (¢) stand, respectively, for the (

X‘-W" _

Jn(t):ft/: " F(XN~n+2)—F - dF(xN—n 1"2) e
—lfx”’"“ F( y—F |1 zdF( B
2J,, XN—n+3 n XN—n+2
1 n-—1
o« t

SO S F(x,)—F |+
(n—1)! ft/,. (xa) n dF(x,)
1 n

=—|1-F |+
n! n

dF(xN —n )

ftxjvinﬁ"zdF(xan+l)leAVﬁ'i+3dF(xAV ~n+2) 00 flf

dF(xy)

N oone ]

(A1

N —n)-fold integral in the first brace and the n-fold integral in the
second. The calculation of J, (?) is given as (remembering that ¢y

=t/n)

—n+1
X\ P
dF (x, _ dF(x,
fr/n (xw ])fr/n (xn)

fri';dF(x\ [ dF(xy)

t/n

I,(t) cannot be expressed in a simple explicit form. We first deduce its recursive expression

t t L
- fO‘dF(xl)fx:dF(xz) e Ix:,:

t t
:F(tk)Ik_,—foldF(xl)fx:dF(xz) .

dF(xk_l)f.A
X

t
=F(t)le - = 3[F () PL o+ [ dF (x)

(—1)k~

=F(t My — k=11

HF @ )PL oyt - +

)f“
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j=1

———[F(ty _; DV,

[
[ F(xy dF (xg - p)
k-2

(A2)
dF(Xk)
1
k-2
[F(xk~z)]2dF(xk~27
Xk -3
k-2, (=DK% et k=2
S T T T fo [F(x,)]* %dF(x,)
(A3)
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where it has been assumed that Io=1. Let m=N —k.
The recurrence relation (A3) can be equivalently written
as

j—m

N 1
In_j()=8,y .

t
—_— _F —_
2 G l [,- ]

2

Together with Egs. (A1)-(A3), Eq. (14) is proven. Apply-
ing the “operator” Y _.z™™ to both sides of Eq. (14).
Eq. (15) is then given, where z is an arbitrary number oth-
er than 0. Obviously, when z=1, Eq. (15) gives the nor-
malization condition.

(A4)

APPENDIX B: GENERALIZED LAPLACE
ASYMPTOTIC INTEGRAL THEOREM

If ¥(x) reaches its unique maximum ¥(x,)=0 in the
interval (a,b) at x =x, g(x4)7#0, and 9" (x,) <O, then
the following asymptotic relation holds for arbitrary

3807
¢>—1when A— :
g (x0)lx — x| exp[ Alx) Jdx
(1+¢)/2
— 1+c¢
~ = r . (Bl
kl[i"(xo) 2 g(x()) ( )

(See, for example, Ref. [25].)
According to this theorem, supposing that Eq. (25) has
solutions §;,i=1,2,...,m, one gets

N 2 o 172
= | A2 . e R B2)
L l21T i§1 A(gu’T) lNhg;(gl;T,Z) (
where L denotes the left-hand side of (23) and
2
zT | T
1___ —
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